

Atari SFP-004 by example
Atari SFP-004 is an FPU extension for the Mega ST. The integration of the optional FPU in the Mega

STE is technically equivalent. There is very little documentation available on programming the FPU in

the SFP-004, so the following shall serve as an example of programming. This example does not replace

the documentation of the FPU. Please refer to the following literature, which is also used in this

example: [1], [2].

DIFFERENCES TO 68020/68030
It is important to first consider the difference to the FPU integration in a 68020/68030-based system,

such as the Atari TT. There, the programmer uses an FPU instruction in the code, a line-F opcode,

where the first nibble is $F. The CPU and FPU then communicate with each other over the bus to

coordinate the mathematical operation, any data transfer, error handling, etc. This all happens invisibly

to the programmer.

However, the 68000 in a Mega ST/STE does not have a coprocessor interface. For this reason, the

interface – integrated in hardware on the 68020/68030 – must be emulated in software, i.e., by the

programmer.

THE INTERFACE OF THE SFP-004
The bus interface of the FPU is mapped into the address space between $FFFA40 and $FFFA60 in the

form of various registers. Details are described in [2]. The most important registers are:

$FFFA40: Response, 16 Bit: The status of the FPU can be read here.

$FFFA4A: Command, 16 Bit: The command to the FPU is written to this address.

$FFFA50: Operand, 32 Bit: Transfer of operands (i.e. data) between CPU and FPU.

AN EXAMPLE
The programming is explained in the following using the – arbitrarily chosen – example of the

implementation of the arc cosine function for the SFP-004 in [3]. The assembler source code is shown

as well as an interactive execution of the individual steps in GFA Basic.

lea 0xfffa50,%a0

movew #0x541c,%a0@(comm)

Loading the command into the command register. The FPU command is always encoded in the second

word of the corresponding Line F opcode.1 Therefore [4] can be used to decode the command:

1 The first word of the opcodes contains information that is important for the CPU (68020/68030), e.g. the source
or destination of data transfers, i.e., the effective address.

Specifically, the $541C command is thus the arc cosine, with the source being data from the CPU (R/M

= 1) in double precision real format (Source Specifier = 101). The result is to be stored in FPU register

FP0 (Destination Register = 000).

cmpiw #0x8900,%a0@(resp)

The FPU starts processing a command at the earliest after the response register has been read for the

first time. Although the command in the example is a comparison (CMPI), the result of the comparison

is not used. For example, a possible error message from the FPU would not be intercepted by this code.

The code assumes to receive the expected response, in this case $1608, which according to [1] is the

Evaluate Effective Address and Transfer Data Primitive:

This would instruct a 68020/68030 to transfer the data specified in the FPU instruction, for example,

from memory. Without explaining all the fields here, it is still apparent that the FPU expects a transfer

from CPU to FPU (DR = 0) with a length of 8 bytes.

This is the operand x of the arc cosine function acos(x) to be calculated, which is 64 bits (8 bytes) long

as a double precision floating point value.

movel %a7@(4),%a0@
movel %a7@(8),%a0@

The argument is therefore transferred to the operand register by two long word transfers, first the

upper 32 bits, then the lower 32 bits. In the example shown, the number +0.0 is transferred, where in

floating-point representation all bits are 0.

movew #0x7400,%a0@(comm)

The next command is transferred to the command register. Again, [4] explains its meaning:

Therefore, it is a FMOVE instruction from an FPU register to the CPU.2 The data format is again double

precision real (Destination Format = 101), the source register is FP0 (Source Register = 000), in which

the result of the previous calculation was stored.

.long 0x0c688900,0xfff067f8

... disassembled:
wait:
cmpiw #0x8900,%a0@(resp)
beq.s wait

The response register is read out again. Again, no error handling takes place, only waiting until the

value is not equal to $8900.

The example shows that the FPU actually returns $8900, a Null Primitive:

In particular, CA = 1 (come again) indicates that the register should be read again. The second read

operation results in the already known Evaluate Effective Address and Transfer Data Primitive.

However, this time $3208 indicates a transfer from the FPU (DR = 1) of 8 bytes in length. This is the

data of register FP0 requested via FMOVE.

movel %a0@,%d0
movel %a0@,%d1

The data is read out – again as two long words – from the operand register. As requested, it is a double-

precision floating-point number, first the upper 32 bits, then the lower 32 bits.

Since the 68881/68882-FPU follows the IEEE-754 number format, the number can be decoded:

It can be seen that this is π/2, which is the correct result of the calculated function acos(0).

2 The description of the instruction as register to memory is to be understood from the view of the CPU. The FPU
has no possibility to write data into the memory. It is the task of the CPU to decode the effective address in the
first word of the opcode and to write data into the memory if necessary.

Mathematical operations with two operands, e.g. a multiplication, require that one operand is present

in an FPU register. Therefore, for these operations, an operand is first loaded into the FPU using an

FMOVE <EA> to Register instruction.

BIBLIOGRAPHY

[1] Motorola, Inc., MC68881/MC68882 Floating-Point Coprocessor User's Manual, Englewood Cliffs,

NJ, USA: Prentice Hall, 1987.

[2] S. Sanders, „The 68881 Floating Point Coprocessor,“ in The Atari Compendium, Long Beach, CA,

SDS Publishing, 1993.

[3] Multiple authors, „Portable Math Library (PML),“ [Online]. Available: https://github.com/th-

otto/pml/blob/01810cabc77c9540cc91d19b4c547232e8ba137e/pmlsrc/acos.c#L185-L196.

[Accessed 2 August 2020].

[4] Motorola, Inc., M68000 Family Programmer’s Reference Manual, 1992.

